Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trials ; 25(1): 190, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491546

RESUMO

BACKGROUND: In healthy people, the "fight-or-flight" sympathetic system is counterbalanced by the "rest-and-digest" parasympathetic system. As we grow older, the parasympathetic system declines as the sympathetic system becomes hyperactive. In our prior heart rate variability biofeedback and emotion regulation (HRV-ER) clinical trial, we found that increasing parasympathetic activity through daily practice of slow-paced breathing significantly decreased plasma amyloid-ß (Aß) in healthy younger and older adults. In healthy adults, higher plasma Aß is associated with greater risk of Alzheimer's disease (AD). Our primary goal of this trial is to reproduce and extend our initial findings regarding effects of slow-paced breathing on Aß. Our secondary objectives are to examine the effects of daily slow-paced breathing on brain structure and the rate of learning. METHODS: Adults aged 50-70 have been randomized to practice one of two breathing protocols twice daily for 9 weeks: (1) "slow-paced breathing condition" involving daily cognitive training followed by slow-paced breathing designed to maximize heart rate oscillations or (2) "random-paced breathing condition" involving daily cognitive training followed by random-paced breathing to avoid increasing heart rate oscillations. The primary outcomes are plasma Aß40 and Aß42 levels and plasma Aß42/40 ratio. The secondary outcomes are brain perivascular space volume, hippocampal volume, and learning rates measured by cognitive training performance. Other pre-registered outcomes include plasma pTau-181/tTau ratio and urine Aß42. Recruitment began in January 2023. Interventions are ongoing and will be completed by the end of 2023. DISCUSSION: Our HRV-ER trial was groundbreaking in demonstrating that a behavioral intervention can reduce plasma Aß levels relative to a randomized control group. We aim to reproduce these findings while testing effects on brain clearance pathways and cognition. TRIAL REGISTRATION: ClinicalTrials.gov NCT05602220. Registered on January 12, 2023.


Assuntos
Cognição , Respiração , Idoso , Humanos , Atenção , Biorretroalimentação Psicológica/métodos , Frequência Cardíaca/fisiologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Pessoa de Meia-Idade
2.
Neuroimage Clin ; 39: 103467, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37454468

RESUMO

Individuals with autism spectrum disorders (ASD) vary in their language abilities, associated with atypical patterns of brain activity. However, few studies have examined the spatiotemporal profiles of lexico-semantic processing in ASD, particularly as a function of language heterogeneity. Thirty-nine high-functioning adolescents with ASD and 21 typically developing (TD) peers took part in a lexical decision task that combined semantic access with demands on cognitive control. Spatiotemporal characteristics of the processing stages were examined with a multimodal anatomically-constrained magnetoencephalography (aMEG) approach, which integrates MEG with structural MRI. Additional EEG data were acquired from a limited montage simultaneously with MEG. TD adolescents showed the canonical left-dominant activity in frontotemporal regions during both early (N250m) and late (N400m) stages of lexical access and semantic integration. In contrast, the ASD participants showed bilateral engagement of the frontotemporal language network, indicative of compensatory recruitment of the right hemisphere. The left temporal N400m was prominent in both groups, confirming preserved attempts to access meaning. In contrast, the left prefrontal N400m was reduced in ASD participants, consistent with impaired semantic/contextual integration and inhibitory control. To further investigate the impact of language proficiency, the ASD sample was stratified into high- and low-performing (H-ASD and L-ASD) subgroups based on their task accuracy. The H-ASD subgroup performed on par with the TD group and showed greater activity in the right prefrontal and bilateral temporal cortices relative to the L-ASD subgroup, suggesting compensatory engagement. The L-ASD subgroup additionally showed reduced and delayed left prefrontal N400m, consistent with more profound semantic and executive impairments in this subgroup. These distinct spatiotemporal activity profiles reveal the neural underpinnings of the ASD-specific access to meaning and provide insight into the phenotypic heterogeneity of language in ASD, which may be a result of different neurodevelopmental trajectories and adoption of compensatory strategies.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Adolescente , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Idioma , Transtorno do Espectro Autista/diagnóstico por imagem , Imageamento por Ressonância Magnética , Cognição
3.
J Am Acad Child Adolesc Psychiatry ; 60(2): 274-285, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32126259

RESUMO

OBJECTIVE: The anterior insular cortex (AI), which is a part of the salience network, is critically involved in visual awareness, multisensory perception, and social and emotional processing, among other functions. In children and adolescents with autism spectrum disorders (ASDs), evidence has suggested aberrant functional connectivity (FC) of AI compared with typically developing peers. While recent studies have primarily focused on the functional connections between salience and social networks, much less is known about connectivity between AI and primary sensory regions, including visual areas, and how these patterns may be linked to autism symptomatology. METHOD: The current investigation implemented functional magnetic resonance imaging to examine resting-state FC patterns of salience and visual networks in children and adolescents with ASDs compared with typically developing controls, and to relate them to behavioral measures. RESULTS: Functional underconnectivity was found in the ASD group between left AI and bilateral visual cortices. Moreover, in an ASD subgroup with more atypical visual sensory profiles, FC was positively correlated with abnormal social motivational responsivity. CONCLUSION: Findings of reduced FC between salience and visual networks in ASDs potentially indicate deficient selection of salient information. Moreover, in children and adolescents with ASDs who show strongly atypical visual sensory profiles, connectivity at seemingly more neurotypical levels may be paradoxically associated with greater impairment of social motivation.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Adolescente , Transtorno do Espectro Autista/diagnóstico por imagem , Encéfalo , Mapeamento Encefálico , Córtex Cerebral , Criança , Humanos , Imageamento por Ressonância Magnética , Motivação , Vias Neurais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...